Abstract

AbstractIn this research, we have developed an approach by incorporating quantum dots (QDs) with red emission into mesoporous silica microspheres through a non-chemical process and obtained luminescent microspheres (LMS). Owing to the lattice structure of LMS, QDs were effectively protected from intrinsic aggregation in matrix and surface deterioration by encapsulant, oxygen and moisture. The LMS composite has therefore maintained large extent luminescent properties of QDs, espe-cially for the high quantum efficiency. Moreover, the fabricated white light emitting diode (WLED) utilizing LMS and YAG:Ce yellow phosphor has demonstrated excellent light performance with color coordinates around (x = 0.33, y = 0.33), correlated color temperature between 5100 and 5500 K and color rendering index of Ra = 90, R9 = 95. The luminous efficiency of the WLED has reached up to a new record of 142.5 lm/W at 20 mA. LMS provide a promising way to practically apply QDs in lightings and displays with high efficiency as well as high stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.