Abstract
In this paper, we demonstrate Q-band power performance of carbon doped AlN/GaN high electron mobility transistors (HEMTs) using a deep sub-micrometer gate length (120 nm). With a maximum drain current density ID of 1.5 A/mm associated to a high electron confinement and an extrinsic transconductance gm of 500 mS/mm, this structure shows excellent electrical characteristics. A maximum oscillation frequency fmax of 242 GHz has been observed. As a result, a state-of-the-art combination at 40 GHz of output power density (POUT = 7 W/mm) and power added efficiency (PAE) of 52% up to VDS = 25V has been obtained. The achievement of such outstanding performance is attributed to the reduced thermal resistance (RTH) as compared to the commonly used double heterostructure by means of Raman thermography.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of High Speed Electronics and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.