Abstract

Conventional optics depend on the gradual accumulation of spatially dependent phase shifts imparted on light propagating through a medium to modify the wavefront of an incident beam. A similar effect may be obtained by the imposition of abrupt, discrete phase changes on a propagating wavefront over a subwavelength scale using photonic metasurfaces. Highly efficient metasurfaces have applications ranging from conventional optics to high-efficiency solar energy conversion, optical communications, and more. We present here the design, computational modeling, and experimental demonstration of all-dielectric transmissive Huygens metasurfaces exhibiting anomalous refraction, defined as the controlled deflection of light at an interface as a function of subwavelength nanostructures. These metasurfaces are composed of dielectric, cylindrical elements, characterized by balanced electric and magnetic dipole resonances. For infrared wavelengths, optical efficiency of 91.3% is demonstrated computationally, and experi...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.