Abstract

We investigate the acousto-optic coupling rates between different acoustic resonance modes and a specified optical resonance mode in a one-dimensional phoxonic crystal fishbone nanobeam formed by periodically arranging semi-cylinders of air on both sides of a suspended silicon waveguide. The gradually tapered unit cells form optical and acoustic resonators. In acousto-optic coupling rate calculation, the acoustic fields and optical fields are obtained by steady state monochromatic analysis and eigen-mode computation, respectively. Results showed that the acoustic polarizations and symmetries of the acoustic resonance modes are dominant factors in the acousto-optic coupling efficiency, and appropriate selection of these parameters can prevent cancellation of acousto-optic interactions, thereby enhancing acousto-optic coupling rates. This study provides important insights that can be applied to acousto-optic device designs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call