Abstract
A grinding wheel wears rapidly during ultrasonic assisted surface generation of a large aperture aspherical RB-SiC mirror, which leads to an increase of grinding force and profile error. In this paper, different types of resinoid bonded diamond grinding wheel with a same grit size were dressed with high-pressure abrasive water jet. The dressing effects of abrasive water jet were assessed through comparing the 3D roughness of the grinding wheel topographies before and after dressing. The experimental results show that diamond grits of a worn grinding wheel are protruding from bond after dressing. The feed rate of nozzle and the bond materials have significant impact on the 3D surface roughness of the wheel and dressing efficient. The softer binder and the decrease of the feed rates and lead to deeper grooves during dressing of grinding wheel. However, too low feed rate will make a large number of abrasive particles drop from binder, which worsens the wheel topography. Therefore, to dress grinding wheel well and efficiently, optimized feed rate must be chosen.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.