Abstract
Health and environmental impact of pesticide contamination of groundwater has been reported repeatedly in many studies. The removal of diazinon from agricultural wastewater is still of great interest due to using widely in many developing countries. In the presented study, the magnetic tragacanth-montmorillonite nanocomposite was utilized as an adsorbent to remove diazinon from an aqueous solution. The adsorbent properties were characterized using FE-SEM, EDX, FTIR, XRD, BET, and VSM techniques. The influence of adsorbent dosage, pH, contact time, and initial concentration of diazinon was studied in a batch system. Different adsorption kinetics and isotherm models were used to describe the kinetic and equilibrium data. The results indicated that the adsorption kinetic was fitted better with a Elovich kinetic model, and the adsorption isotherm was well described by the Langmuir-Freundlich model, and the maximum adsorption capacity was 416mgg-1. According to Weber and Morris's model and Boyd plot, the results demonstrated that the adsorption kinetic was controlled simultaneously by film diffusion and intraparticle diffusion. Besides, a thermodynamic study showed that the removal of diazinon is an endothermic process. Considering the results, magnetic tragacanth-montmorillonite nanoadsorbent has a high capability to remove diazinon from aqueous solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.