Abstract

The Integrated Laser Communication/Ranging System, which uses a coded signal as the ranging information carrier, is of great importance to the next large-capacity inter-satellite information network. In this paper, a system design with a high-sensitivity feedback-homodyne detection scheme and an asynchronous ranging algorithm is demonstrated with real-time field-programmable gate array-implementation (FPGA). The parallel fast Fourier transformation (FFT) estimation is applied to improve the speed and the range of the wavelength drift tracking, which can handle a dynamic wavelength drift up to 2.4pm/s (300MHz/s). Meanwhile, for clock sources with subtle dynamic frequency offset and sufficient stability, the proposed fractional symbol ranging method is proven to achieve millimeter-level measurement accuracy. The designed system is shown to perform well in terms of both laser linewidth tolerance and noise resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call