Abstract

This research is focused on the design and realization of displacement sensors in gap waveguide technology. It is shown that with a small but fundamental change in the structure of a conventional gap waveguide, a linear displacement can be sensed. To this end, a unique feature of gap waveguides, i.e. the fact that no electrical connection between the top and bottom parts of the gap waveguide is required, is used. It is further shown that the concept can be also used for the development of rotation sensors. To validate the proposed concept linear and angular displacement sensors are designed and simulated. A prototype of the proposed linear displacement sensor is fabricated for demonstration. Agreement between the computed and measured results validates the concept.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call