Abstract

The reconstruction of high dynamic range (HDR) images via conventional camera systems and low dynamic range (LDR) images is a growing field of research in image acquisition. The radiance map associated with the HDR image of a scene is typically computed using multiple images of the same scene captured at different exposures (i.e., bracketed LDR imzages). This approach, though inexpensive, is sensitive to noise under high camera ISO. Each bracketed image is associated with a different level of noise due to the change in exposure time, and the noise is further amplified when tone-mapping the HDR image for display. A new framework is proposed to address the associated noise in the context of random fields. The estimation of the HDR image from a set of LDR images is formulated as a stochastically fully connected conditional random field where the spatial information is incorporated to compute the HDR value in combination with the LDR image values. Experimental results show that the proposed framework compensated the non-stationary ISO noise while preserving the boundaries in the estimated HDR images.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call