Abstract
High-speed and high-accuracy three-dimensional (3D) measurement plays an important role in numerous areas. The recent proposed binary defocusing techniques have enabled the speed breakthrough by utilizing 1-bit binary fringe patterns with the advanced digital light processing (DLP) projection platform. To enhance the phase quality and measurement accuracy, extensive research has also been conducted to modulate and optimize the binary patterns spatially or temporally. However, it remains challenging for such techniques to measure objects with high dynamic range (HDR) of surface reflectivity. Therefore, to overcome this problem, this paper proposes a novel HDR 3D measurement method based on spectral modulation and multispectral imaging. By modulating the illumination light and acquiring the fringe patterns with a multispectral camera, high-contrast HDR fringe imaging and 3D measurement can be achieved. Experiments were carried out to demonstrate the effectiveness of the proposed strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.