Abstract

Since mobile networks are not currently deployed on a large scale, research in this area is mostly by simulation. Among other simulation parameters, the mobility model plays a very important role in determining the protocol performance in MANET. Based on random direction mobility model, a high dynamic adaptive mobility network model is proposed in the paper. The algorithms and modeling are mainly studied and explained in detail. The technique keystone is that normal distribution is combined with uniform distribution and inertial feedback control is combined with kinematics, through the adaptive control on nodes speed and prediction tracking on nodes routes, an adaptive model is designed, which can be used in simulations to produce realistic and dynamic network scenarios. It is the adaptability that nodes mobile parameters can be adjusted randomly in three-dimensional space. As a whole, colony mobility can show some rules. Such random movement processes as varied speed and dwells are simulated realistically. Such problems as sharp turns and urgent stops are smoothed well. The model can be adapted to not only common dynamic scenarios, but also high dynamic scenarios. Finally, the mobility model performance is analyzed and validated based on random dynamic scenarios simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call