Abstract

Photothermal slippery surface has broad applications in many research fields for noncontacting, loss-free, and flexible droplet manipulation capability. In this work, with specific morphologic parameters and modified base materials doped by Fe3O4, a high-durability photothermal slippery surface (HD-PTSS) was proposed and implemented based on ultraviolet (UV) lithography to achieve repeatability of more than 600 cycles. The instantaneous response time and transport speed of HD-PTSS were related to near-infrared ray (NIR) powers and droplet volume. Meanwhile, the durability was closely related to the morphology of HD-PTSS, which impacts the recovering of a lubricant layer. The droplet manipulation mechanism of HD-PTSS was discussed in depth, and the Marangoni effect was found to be the key factor for the durability of HD-PTSS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call