Abstract

Aspirin and its main metabolite salicylate are widely used to relieve pain, treat inflammatory diseases, and prevent ischemic stroke. Multiple pathways are responsible for the therapeutic actions exerted by these drugs. One of the pathways is targeting neuronal receptors/ion channels in the central nervous system. Correspondingly, increasing evidence has implicated acid-sensing ion channels (ASICs) in the processes of the diseases that are medicated by aspirin and salicylate. We therefore employed whole-cell patch-clamp recordings to examine the effects of salicylate as well as aspirin on ASICs in cultured cortical neurons of the rat. We recorded rapid and reversible inhibition of ASIC current by millimolar concentrations of aspirin and salicylate and found that salicylate reduced acidosis-induced membrane depolarization. These data suggest that ASICs in the cortex are molecular targets of high doses of aspirin and salicylate. In addition, the results from lactate dehydrogenase release measurement showed that high doses of aspirin and salicylate protected the cortical neuron from acidosis-induced neuronal injury. These findings may contribute to a better understanding of the therapeutic mechanisms of aspirin and salicylate actions in the brain and provide new evidence on aspirin and salicylate used as neuroprotective agents in the treatment of ischemic stroke.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.