Abstract

Ground-level ozone (O3) levels are nowadays elevated in wide regions of the Earth, causing significant effects on plants that finally lead to suppressed productivity and yield losses. Ethylenediurea (EDU) is a chemical compound which is widely used in research projects as phytoprotectant against O3 injury. The EDU mode of action remains still unclear, while there are indications that EDU may contribute to plants with nitrogen (N) when the soil is poor in N and the plants have relatively small leaf area. To reveal whether the N content of EDU acts as a fertilizer to plants when the soil is not poor in N and the plants have relatively large total plant leaf area, willow plants (Salix sachalinensis Fr. Schm) were exposed to low ambient O3 levels and treated ten times (9-day interval) with 200mL soil drench containing 0, 800 or 1600mg EDU L−1. Fertilizer was added to a nutrient-poor soil, and the plants had an average plant leaf area of 9.1m2 at the beginning of EDU treatments. Indications for EDU-induced hormesis in maximum electron transport rate (Jmax) and ratio of intercellular to ambient CO2 concentration (Ci:Ca) were observed at the end of the experiment. No other EDU-induced effects on leaf greenness and N content, maximum quantum yield of photosystem II (Fv/Fm), gas exchange, growth and matter production suggest that EDU did not act as N fertilizer and did not cause toxicity under these experimental conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.