Abstract

Dissolving microneedles (DMN) supplemented with therapeutic molecules have been developed to enhance transdermal delivery efficiency of topically applied drugs in a minimally invasive manner. However, the dose of the drugs in DMN system is limited owing to the low solubility of drug. In fact, although triamcinolone acetonide (TA) is one of the most widely prescribed drugs for relieving atopic dermatitis (AD), its poor dissolving nature makes it difficult to design and fabricate DMN containing therapeutic dosage of TA. In this study, TA suspension is introduced to encapsulate therapeutic dosage of TA. Sonication and composition optimization of polymers is key to fabricate high dose TA-DMN to induce particle size reduction and dispersion stability of suspension, respectively. After confirming the physical performance of TA-DMN using the selected formulation in vitro, the anti-inflammatory effects of TA-DMN are evaluated in vivo using a mouse model affected with skin inflammation to mimic AD in humans. Herein, high-dose TA-DMN is presented as a candidate agent for relieving AD and, furthermore, for wide application in the treatment of skin inflammatory diseases in which high-dose steroid drugs are required.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.