Abstract

Ferroptosis, a form of iron-dependent, lipid peroxidation-driven cell death, has been extensively investigated in recent years, and several studies have suggested that the ferroptosis-inducing properties of iron-containing nanomaterials could be harnessed for cancer treatment. Here we evaluated the potential cytotoxicity of iron oxide nanoparticles, with and without cobalt functionalization (Fe2O3 and Fe2O3@Co-PEG), using an established, ferroptosis-sensitive fibrosarcoma cell line (HT1080) and a normal fibroblast cell line (BJ). In addition, we evaluated poly (ethylene glycol) (PEG)-poly(lactic-co-glycolic acid) (PLGA)-coated iron oxide nanoparticles (Fe3O4-PEG-PLGA). Our results showed that all the nanoparticles tested were essentially non-cytotoxic at concentrations up to 100 μg/mL. However, when the cells were exposed to higher concentrations (200-400 μg/mL), cell death with features of ferroptosis was observed, and this was more pronounced for the Co-functionalized nanoparticles. Furthermore, evidence was provided that the cell death triggered by the nanoparticles was autophagy-dependent. Taken together, the exposure to high concentrations of polymer-coated iron oxide nanoparticles triggers ferroptosis in susceptible human cancer cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call