Abstract
Auditory neuropathy (AN) is a hearing disorder characterized by an abnormal auditory brainstem response (ABR). This study examined experimental AN model induced in mice following increased dosages of pyridoxine. Induced AN was examined for < or =10 weeks following the last pyridoxine treatment. To assess AN, we evaluated the ABR, auditory middle latency response (AMLR), otoacoustic emission (OAE), and histochemical morphology of the auditory nerve. Pyridoxine-treated mice exhibited an increase in the hearing threshold shift and delayed latency of both ABR and AMLR in proportion to pyridoxine dosage. Additionally, the extent of auditory nerve fiber loss increased in a dose-dependent manner following pyridoxine intoxication. Coffee or trigonelline treatment ameliorated the hearing threshold shift, delayed latency of the auditory evoked potential, and improved sensory fiber loss induced by pyridoxine intoxication. The present findings demonstrate that high-dose pyridoxine administration can be used to produce a new mouse model for AN, and coffee or trigonelline as a main active compound of coffee extract can potentially facilitate recovery from pyridoxine-induced auditory neuropathy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.