Abstract

SummaryThe paper considers variable selection in linear regression models where the number of covariates is possibly much larger than the number of observations. High dimensionality of the data brings in many complications, such as (possibly spurious) high correlations between the variables, which result in marginal correlation being unreliable as a measure of association between the variables and the response. We propose a new way of measuring the contribution of each variable to the response which takes into account high correlations between the variables in a data-driven way. The proposed tilting procedure provides an adaptive choice between the use of marginal correlation and tilted correlation for each variable, where the choice is made depending on the values of the hard thresholded sample correlation of the design matrix. We study the conditions under which this measure can successfully discriminate between the relevant and the irrelevant variables and thus be used as a tool for variable selection. Finally, an iterative variable screening algorithm is constructed to exploit the theoretical properties of tilted correlation, and its good practical performance is demonstrated in a comparative simulation study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.