Abstract

Learning the undirected graph structure of a Markov network from data is a problem that has received a lot of attention during the last few decades. As a result of the general applicability of the model class, a myriad of methods have been developed in parallel in several research fields. Recently, as the size of the considered systems has increased, the focus of new methods has been shifted towards the high-dimensional domain. In particular, introduction of the pseudo-likelihood function has pushed the limits of score-based methods which were originally based on the likelihood function. At the same time, methods based on simple pairwise tests have been developed to meet the challenges arising from increasingly large data sets in computational biology. Apart from being applicable to high-dimensional problems, methods based on the pseudo-likelihood and pairwise tests are fundamentally very different. To compare the accuracy of the different types of methods, an extensive numerical study is performed on data generated by binary pairwise Markov networks. A parallelizable Gibbs sampler, based on restricted Boltzmann machines, is proposed as a tool to efficiently sample from sparse high-dimensional networks. The results of the study show that pairwise methods can be more accurate than pseudo-likelihood methods in settings often encountered in high-dimensional structure learning applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.