Abstract

We study full Bayesian procedures for high-dimensional linear regression. We adopt data-dependent empirical priors introduced in Martin et al. (Bernoulli 23(3):1822–1847, 2017). In their paper, these priors have nice posterior contraction properties and are easy to compute. Our paper extend their theoretical results to the case of unknown error variance . Under proper sparsity assumption, we achieve model selection consistency, posterior contraction rates as well as Bernstein von-Mises theorem by analyzing multivariate t-distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.