Abstract

Gaussian concentration graphical models are one of the most popular models for sparse covariance estimation with high-dimensional data. In recent years, much research has gone into development of methods which facilitate Bayesian inference for these models under the standard $G$-Wishart prior. However, convergence properties of the resulting posteriors are not completely understood, particularly in high-dimensional settings. In this paper, we derive high-dimensional posterior convergence rates for the class of decomposable concentration graphical models. A key initial step which facilitates our analysis is transformation to the Cholesky factor of the inverse covariance matrix. As a by-product of our analysis, we also obtain convergence rates for the corresponding maximum likelihood estimator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.