Abstract

The expanding number of assets offers more opportunities for investors but poses new challenges for modern portfolio management (PM). As a central plank of PM, portfolio selection by expected utility maximization (EUM) faces uncontrollable estimation and optimization errors in ultrahigh-dimensional scenarios. Past strategies for high-dimensional PM mainly concern only large-cap companies and select many stocks, making PM impractical. We propose a sample-average-approximation-based portfolio strategy to tackle the difficulties above with cardinality constraints. Our strategy bypasses the estimation of mean and covariance, the Chinese walls in high-dimensional scenarios. Empirical results on S&P 500 and Russell 2000 show that an appropriate number of carefully chosen assets leads to better out-of-sample mean-variance efficiency. On Russell 2000, our best portfolio profits as much as the equally weighted portfolio but reduces the maximum drawdown and the average number of assets by 10% and 90%, respectively. The flexibility and the stability of incorporating factor signals for augmenting out-of-sample performances are also demonstrated. Our strategy balances the tradeoff among the return, the risk, and the number of assets with cardinality constraints. Therefore, we provide a theoretically sound and computationally efficient strategy to make PM practical in the growing global financial market. Supplementary materials for this article are available online.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.