Abstract

The objective of this paper is to explore different modeling strategies to generate high-dimensional Bernoulli vectors. We discuss the multivariate Bernoulli (MB) distribution, probe its properties and examine three models for generating random vectors. A latent multivariate normal model whose bivariate distributions are approximated with Plackett distributions with univariate normal distributions is presented. A conditional mean model is examined where the conditional probability of success depends on previous history of successes. A mixture of beta distributions is also presented that expresses the probability of the MB vector as a product of correlated binary random variables. Each method has a domain of effectiveness. The latent model offers unpatterned correlation structures while the conditional mean and the mixture model provide computational feasibility for high-dimensional generation of MB vectors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.