Abstract

We develop an essentially optimal numerical method for solving two-scale Maxwell wave equations in a domain D⊂Rd. The problems depend on two scales: one macroscopic scale and one microscopic scale. Solving the macroscopic two-scale homogenized problem, we obtain the desired macroscopic and microscopic information. This problem depends on two variables in Rd, one for each scale that the original two-scale equation depends on, and is thus posed in a high dimensional tensorized domain. The straightforward full tensor product finite element (FE) method is exceedingly expensive. We develop the sparse tensor product FEs that solve this two-scale homogenized problem with essentially optimal number of degrees of freedom, i.e. the number of degrees of freedom differs by only a logarithmic multiplying factor from that required for solving a macroscopic problem in a domain in Rd only, for obtaining a required level of accuracy. Numerical correctors are constructed from the FE solution. We derive a rate of convergence for the numerical corrector in terms of the microscopic scale and the FE mesh width. Numerical examples confirm our analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call