Abstract

High-dimensional covariance matrix estimation is one of the fundamental and important problems in multivariate analysis and has a wide range of applications in many fields. In practice, it is common that a covariance matrix is composed of a low-rank matrix and a sparse matrix. In this paper we estimate the covariance matrix by solving a constrained Lq-type regularized optimization problem. We establish the first-order optimality conditions for this problem by using proximal mapping and the subspace method. The proposed stationary point degenerates to the first-order stationary points of the unconstrained Lq regularized sparse or low-rank optimization problems. A smoothing alternating updating method is proposed to find an estimator for the covariance matrix. We establish the convergence of the proposed calculation method. The numerical simulation results show the effectiveness of the proposed approach for high-dimensional covariance estimation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call