Abstract

Expression levels of genes (RT-qPCR) related to Ca and P homeostasis (transporters and claudins (CLDN)) were determined in porcine jejunal and colonic mucosa. Forty growing pigs (BW 30.4±1.3 kg) received a low and high Ca content (2.0 and 9.6 g/kg, respectively) diet with or without microbial phytase (500 FTU/kg) for 21 days. Dietary Ca intake enhanced serum Ca and alkaline phosphatase concentration and reduced P, 1,25(OH)2D3, and parathyroid hormone concentration. Jejunal TRPV5 mRNA expression was decreased (32%) with phytase inclusion only, while colonic transient receptor potential vanilloid 5 (TRPV5) mRNA was reduced by dietary Ca (34%) and phytase (44%). Both jejunal and colonic TRPV6 mRNA expression was reduced (30%) with microbial phytase. Calbindin-D9k mRNA expression was lower in colonic but not jejunal mucosa with high dietary Ca (59%) and microbial phytase (37%). None of the mRNAs encoding the Na-P cotransporters (NaPi-IIc, PiT-1, PiT-2) were affected. Jejunal, but not colonic expression of the phosphate transporter XPR1, was slightly downregulated with dietary Ca. Dietary Ca downregulated colonic CLDN-4 (20%) and -10 (40%) expression while CLDN-7 was reduced by phytase inclusion in pigs fed low dietary Ca. Expression of colonic CLDN-12 tended to be increased by phytase. In jejunal mucosa, dietary Ca increased CLDN-2 expression (48%) and decreased CLDN-10 (49%) expression, while phytase slightly upregulated CLDN-12 expression. In conclusion, compared to a Ca deficient phytase-free diet, high dietary Ca and phytase intake in pigs downregulate jejunal and colonic genes related to transcellular Ca absorption and upregulate Ca pore-forming claudins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call