Abstract

AbstractHigh‐dielectric‐constant materials attract much attention due to their broad applications in modern electronics. Barium titanate (BTO) is an established material possessing an ultrahigh dielectric constant; however, a complete understanding of the responsible underlying physical mechanism remains elusive. Here a set of density‐functional‐theory calculations for the static dielectric tensors of barium titanate under strain has been performed. The dielectric constant increases to ≈7300 under strain. The analysis of the computed vibrational modes shows that transverse vibrational mode softening (the appearance of low‐frequency modes) is responsible for this significant increase as driven by the relationship between lattice contribution for the static dielectric constant (k) and vibrational frequency (ω), i.e., . The relevant vibrational mode indicates a large counter‐displacement of Ti ions and O anions, which greatly enhances electrical dipoles to screen the electric field. The calculations not only interpreted experimental data on the high dielectric constants of BTO, where the lattice deformation due to the strains from the grain nanostructure plays an important role, but also pointed to exploring high‐throughput calculations to facilitate the discovery of the advanced dielectric materials. Moreover, the calculations can prove useful for doped BTO, for which local strains fields can be achieved using defect engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.