Abstract

We describe uncooled thermal detectors with a peak detectivity of at least 3 ×10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">9</sup> cm √{Hz}/W with spectrally selective absorption in the long-wave infrared. The spectral selectivity in absorption is achieved through resonant cavity coupling of a thin metal film with a low-order air-gap optical cavity. The electrical readout uses thermoelectric thin films with a Johnson noise limited performance. The detectors are of multiple sizes but those with 100- μm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> area have time constants of 58 ms and thermal conductances of 2.3 ×10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-7</sup> W/K.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.