Abstract
The apetalous genotype is a morphological ideotype for increasing seed yield and should be of considerable agricultural use; however, only a few studies have focused on the genetic control of this trait in Brassica napus. In the present study, a recombinant inbred line, the AH population, containing 189 individuals was derived from a cross between an apetalous line ‘APL01’ and a normally petalled variety ‘Holly’. The Brassica 60 K Infinium BeadChip Array harboring 52,157 single nucleotide polymorphism (SNP) markers was used to genotype the AH individuals. A high-density genetic linkage map was constructed based on 2,755 bins involving 11,458 SNPs and 57 simple sequence repeats, and was used to identify loci associated with petalous degree (PDgr). The linkage map covered 2,027.53 cM, with an average marker interval of 0.72 cM. The AH map had good collinearity with the B. napus reference genome, indicating its high quality and accuracy. After phenotypic analyses across five different experiments, a total of 19 identified quantitative trait loci (QTLs) distributed across chromosomes A3, A5, A6, A9 and C8 were obtained, and these QTLs were further integrated into nine consensus QTLs by a meta-analysis. Interestingly, the major QTL qPD.C8-2 was consistently detected in all five experiments, and qPD.A9-2 and qPD.C8-3 were stably expressed in four experiments. Comparative mapping between the AH map and the B. napus reference genome suggested that there were 328 genes underlying the confidence intervals of the three steady QTLs. Based on the Gene Ontology assignments of 52 genes to the regulation of floral development in published studies, 146 genes were considered as potential candidate genes for PDgr. The current study carried out a QTL analysis for PDgr using a high-density SNP map in B. napus, providing novel targets for improving seed yield. These results advanced our understanding of the genetic control of PDgr regulation in B. napus.
Highlights
IntroductionFirst and foremost, photosynthesis in cultivars without petals is more efficient, with the thick and brightly colored flowers preventing Brassica oilseeds from efficiently using solar energy (Jiang, 2007)
Oilseed rape (Brassica napus L., AACC, 2n = 38) is a widely planted oil crop worldwide
The heritabilities of major genes ranged from 68.52% to 88.01% in the five experiments (Table 1), significantly higher than that of the polygenes (11.99–31.48%), indicating that petalous degree (PDgr) in B. napus was determined by the combination of major genes and polygenes, but mainly by the major genes
Summary
First and foremost, photosynthesis in cultivars without petals is more efficient, with the thick and brightly colored flowers preventing Brassica oilseeds from efficiently using solar energy (Jiang, 2007). The apetalous cultivars have higher yield potentials than the normal type. Mendham et al (1991) revealed that the yield of apetalous lines was higher than normal petaled cultivars. The apetalous type of rapeseeds might have a lower rate of infection from diseases distributed by petals, such as Sclerotinia sclerotiorum. Compared with normal petaled controls, apetalous genotypes have a much lower incidence and severity of Sclerotinia infection (Lefol and Morrall, 1996; Zhao and Wang, 2004). Genotypes with apetalous flowers are a component of the high-yielding ideotype
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.