Abstract

It remains a challenge to develop efficient noble metal-free electrocatalysts for the oxygen reduction reaction (ORR) in various renewable energy systems. Single atom catalysts have recently drawn great attention as promising candidates both due to their high activity and their utmost atom utilization for electrocatalytic ORR. Herein, the synthesis of an efficient ORR electrocatalyst that is composed of N-doped mesoporous carbon and a high density (4.05 wt%) of single Fe atoms via pyrolysis Fe-conjugated polymer is reported. Benefiting from the abundant atomic Fe-N4 sites on its conductive, mesoporous carbon structures, this material exhibits an excellent electrocatalytic activity for ORR, with positive onset potentials of 0.93 and 0.98V in acidic and alkaline media, respectively. Its electrocatalytic performance for ORR is also comparable to that of Pt/C (20 wt%) in both media. Furthermore, it electrocatalyzes the reaction almost fully to H2 O (or barely to H2 O2 ). Additionally, it is durable and tolerates the methanol crossover reaction well. Furthermore, a proton exchange membrane fuel cell and a zinc-air battery assembled using it on their cathodedeliver high maximum power densities (320 and 91mW cm-2 , respectively). Density functional theory calculation reveals that the material's decent electrocatalytic performance for ORR is due to its atomically dispersed Fe-N4 sites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call