Abstract

Perpendicular magnetic recording media, composed of granular-type FePt-MgO films on Fe-Ta-C soft magnetic underlayer (SUL), have been fabricated on to 2.5-in glass disks. [001] textured FePt granular films with high-perpendicular magnetic anisotropy were obtained by annealing the FePt/MgO multilayer films. The FePt grain size, perpendicular coercivity, magnetic activation volume, and the exchange coupling between the FePt grains were found to be strongly dependent on the initial multilayer structures and the annealing conditions. The recording performance of the disks was evaluated by a spin-stand. The obtained results reveal a close correlation between the recording performance and magnetic properties. The thermal stability of the granular-type FePt media was studied using high-temperature magnetic force microscopy (MFM) technique, equipped with in situ sample heating, in the temperature range 25/spl deg/C-200/spl deg/C. The estimated signal decay at high temperature is ascribed to the temperature dependent magnetic anisotropy behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call