Abstract

Abstract Cardiac arrhythmias such as atrial fibrillation occur frequently in industrialized countries. Radiofrequency ablation (RFA) is a standard treatment if drug therapy fails. This minimally invasive surgery aims at stabilizing the heart rhythm on a permanent basis. However, the procedure commonly needs to be repeated because of the high recurrence rate of arrhythmias. Non-transmural lesions as well as gaps within linear lesions are among the main problems during the RFA. The assessment of lesion formation is not adequate in state of the art procedures. Therefore, the aim of this study is to investigate the short-term reversibility of lesions using human electrograms recorded by a high-density mapping system during an electrophysiological study (EPS). A predefined measurement protocol was executed during the EPS in order to create three ablation points in the left atrium. Subsequently, after preprocessing the recorded signals, electrogram (EGM) paths were formed along the endocardial surface of the atrium. By analyzing changes of peak to peak amplitudes of unipolar EGMs before and after ablation, it was possible to distinguish lesion area and healthy myocardium. The peak to peak amplitudes of the EGMs decreased by 40-61% after 30 seconds of ablation. Furthermore, we analyzed the morphological changes of EGMs surrounding the lesion. High-density mapping data showed that not only the tissue, which had direct contact with the catheter tip during the RFA, but also the surrounding tissue was affected. This was demonstrated by low peak to peak amplitudes in large areas with a width of 14 mm around the center of the ablation lesion. After right pulmonary vein isolation, high-density mapping was repeated on the previous lesions. The outer region of RFA-treated tissue appears to recover as opposed to the central core of the ablation point. This observation suggests that the meaningfulness of an immediate remap after ablation during an EPS may lead the physician to false conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.