Abstract

Palmitate has been implicated in the induction of cardiomyocyte apoptosis via reducing the activity of 5′ AMP-activated protein kinase (AMPK). We sought to evaluate whether high-density lipoproteins (HDLs), known for their cardioprotective features and their potential to increase AMPK activity, can reduce palmitate-induced cardiomyocyte apoptosis and whether this effect is AMPK-dependent. Therefore, cardiomyocytes were isolated from adult Wistar rat hearts via perfusion on a Langendorff-apparatus and cultured in free fatty acid-free BSA control medium or 0.5 mM palmitate medium in the presence or absence of HDL (5 μg protein/ml) with or without 0.1 μM of the AMPK-inhibitor compound S for the analysis of Annexin V/propidium, genes involved in apoptosis and fatty acid oxidation, and cardiomyocyte contractility. We found that HDLs decreased palmitate-induced cardiomyocyte apoptosis as indicated by a reduction in Annexin V-positive cardiomyocytes and an increase in Bcl-2 versus Bax ratio. Concomitantly, HDLs increased the palmitate-impaired expression of genes involved in fatty acid oxidation. Furthermore, HDLs improved the palmitate-impaired cardiomyocyte contractility. All effects were mediated in an AMPK-dependent manner, concluding that HDLs reduce palmitate-induced cardiomyocyte apoptosis, resulting in improved cardiomyocyte contractility through a mechanism involving AMPK.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.