Abstract

To examine the recent advances in our knowledge of HDL metabolism, composition, function, and coronary heart disease (CHD), as well as marked HDL deficiency states because of mutations in the apolipoprotein (apo) A-I, ATP-binding cassette transfer protein A1 and lecithin cholesterol acyltransferase (LCAT) gene loci. It has been documented that apoA-I, myeloperoxidase and paraoxonase 1 (PON1) form a complex in HDL that is critical for HDL binding and function. Myeloperoxidase has a negative impact on HDL function, whereas PON1 has a beneficial effect. Patients who lack apoA-I develop markedly premature CHD. Patients who lack ATP-binding cassette transfer protein A1 transporter function have only very small discoidal preβ-1 HDL, and develop hepatosplenomegaly, intermittent neuropathy and premature CHD, although significant heterogeneity for these disorders has been reported. Patients with LCAT deficiency have abnormal small discoidal LDLs and HDL particles, and develop kidney failure. Enzyme replacement therapy is being developed for the latter disorder. Recent data indicates that proteins other than apoA-I and apoA-II such as MPO and PON1 have important effects on HDL function. There has been considerable recent progress made in our understanding of HDL protein content and function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.