Abstract

We report the development of potential theranostic agents for cardiovascular disease that are based on high-density lipoprotein-like magnetic nanostructures (HDL-MNS). The HDL-MNS offer prospects for diagnosis via noninvasive magnetic resonance imaging for anatomic detection and also serve as effective cholesterol efflux agents to address atherosclerotic vascular lesions. The HDL-MNS are synthesized by adding phospholipids and the HDL-defining apolipoprotein A1 to the surface of magnetic nanostructures (MNS) to mimic some aspects of natural HDL particles. From a diagnostic perspective, HDL-MNS show a 5 times higher contrast (r2 relaxivity up to 383 mM–1 s–1) in magnetic resonance imaging (MRI) than commercially available T2 MRI contrast agents (e.g., Ferumoxytol). Internalization of HDL-MNS by macrophage cells was confirmed by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), inductive-coupled plasma mass spectrometry (ICP-MS), and successfully imaged via MRI. Also, the H...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call