Abstract
Background: High density lipoprotein (HDL) is well established to have an athero-protective role under normal conditions; however, pro-inflammatory alteration of HDL proteins may transform the HDL particle into a dysfunctional molecule. Our aim was to investigate HDL dysfunction by measuring enzyme-based markers in carotid artery stenosis (CAS). Patients and methods: All participants underwent duplex ultrasound and 52 subjects diagnosed with CAS and 51 subjects who had no significant stenosis (as controls) were enrolled in this study. Serum lipid profiles and serum parameters associated with dysfunctional HDL including myeloperoxidase (MPO), paraoxonase 1 (PON1), arylesterase (ARE) activity, and lipid hydroperoxide (LOOH) levels were measured. Results: It was found that the patients with CAS had increased levels of MPO and LOOH while PON1 activity was decreased. There was no significant difference between the CAS and non-CAS groups in terms of HDL levels. MPO/PON1, MPO/ARE, and LOOH/PON1 ratios were significantly increased in the CAS group. MPO/PON1 and MPO/ARE ratios both demonstrated significant correlations with degree of stenosis (%). Conclusions: The MPO/PON1 and MPO/ARE ratios may be potential serum markers that can enable the monitoring of HDL functionality and the assessment of atherosclerotic disease risks. Additionally, monitoring the oxidative balance of lipids on HDL molecules by LOOH/PON1 ratio may have value in the early detection of pro-atherosclerotic transformation of the HDL particle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.