Abstract

Cutaneous lipids, endogenously synthetized and transported by lipoproteins, play a pivotal role in maintaining skin barrier. An impairment of extracutaneous lipid trafficking leads to the development of xanthomas, mostly arising in hyperlipidemic patients, but also in subjects with high-density lipoprotein (HDL) deficiency.The aim of this work was to evaluate, in a genetically modified mouse model, lacking two protein components of HDL particles, apolipoprotein(apo)E and apoA-I, the effect of HDL deficiency on skin morphology.Control mice (C57BL/6), apoE deficient mice (EKO), apoA-I deficient mice (A-IKO) and apoA-I/apoE double knockout mice (A-IKO/EKO) were maintained on a low-fat/low-cholesterol diet up to 30 weeks of age. At sacrifice, skin biopsies were processed for light (LM) and transmission electron microscopy (TEM).Whereas the skin of EKO, A-IKO, and C57BL/6 mice was comparable, LM analysis in A-IKO/EKO mice showed an increase in dermal thickness and the presence of foam cells and T lymphocytes in reticular dermis. TEM analysis revealed the accumulation of cholesterol clefts in the papillary dermis and of cholesterol crystals within foam cells.In conclusion, A-IKO/EKO mice represent an experimental model for investigating the cutaneous phenotype of human HDL deficiency, thus mimicking a condition in which human xanthomatous lesions can develop.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.