Abstract
The stationary one dimensional Schrodinger-Poisson system on a bounded interval is considered in the limit of a small Debye length (or small temperature). Electrons are supposed to be in a mixed state with the Boltzmann statistics. Using various reformulations of the system as convex minimization problems, we show that only the first energy level is asymptotically occupied. The electrostatic potential is shown to converge towards a boundary layer potential with a profile computed by means of a half space Schrodinger-Poisson system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.