Abstract

Photocatalytic methane conversion requires a strong polarization environment composed of abundant activation sites with the robust stretching ability for C-H scissoring. High-density frustrated Lewis pairs consisting of low-valence Lewis acid Nb and Lewis base Nb-OH are fabricated on lamellar Nb2O5 through a thermal-reduction promoted phase-transition process. Benefitting from the planar atomic arrangement of lamellar Nb2O5, the frustrated Lewis pairs sites are highly exposed and accessible to reactants, which results in a superior methane conversion rate of 1456 μmol g−1 h−1 for photocatalytic non-oxidative methane coupling without the assistance of noble metals. The time-dependent DFT calculation demonstrates the photo-induced electron transfer from LA to LB sites enhances their intensities in a concerted way, promoting the C-H cleavage through the coupling of LA and LB. This work provides in-depth insight into designing and constructing a polarization micro-environment for photocatalytic C-H activation of methane without the assistance of noble metals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.