Abstract

Rotating electric fields are used to compress electron plasmas confined in a Penning-Malmberg trap. Bifurcation and hysteresis are observed between low-density and high-density steady states as a function of the applied electric field amplitude and frequency. These observations are explained in terms of torque-balanced fixed points using a simple model of the torques on the plasma. Perturbation experiments near the high-density fixed point are used to determine the magnitude, frequency, and voltage dependence of the drive torque. The broader implications of these results are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.