Abstract

Colloids are essential materials for modern inkjet printing and coating technology. For printing and coating, it is desirable to have a high density of colloids with uniformity. Binary colloids, which consist of different size colloidal particles, have the potential to achieve high coating density and uniformity from size effects. We report a strategy to attain high-density deposits of binary colloids with uniform, crack-free, and symmetric deposits through droplet evaporation on micropillar arrays. We modify surfaces of micropillar arrays with plasma treatment to control their surface energy and investigate how binary colloidal fluids turn into well-controlled deposits during evaporation with X-ray microscopic and tomographic characterizations. We attribute temporary surface energy modification of micropillar arrays to the well-controlled high-density final deposits. This simple, low-cost, and scalable strategy would provide a viable way to get high-quality, high-density deposits of colloids for various applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.