Abstract

The wide bandgap and high carrier mobility of silicon carbide (SiC), as well as its physical and chemical stability, make it a promising material for a number of applications. One of the key requirements for these applications involves oxide formation on SiC. The usefulness of the oxide produced by anodizing is, however, limited since the anodic oxide formed on SiC in the usual dilute aqueous solution has a low density and high surface roughness. Here, we consider a new parameter in anodic oxide formation by focusing on the concentration of free water in the electrolyte, using a highly concentrated aqueous solution. In a concentrated solution, oxygen evolution, which results in a reduction in the density of the oxide, is suppressed, and the rate of formation of anodic oxide at defect sites effectively decreases to reduce the surface roughness. Furthermore, an interfacial layer with a higher density than SiO2 is formed between SiC and SiO2, buffering the difference in density between them. As a result, we successfully obtained an anodic oxide with a relatively high density and low surface roughness. This study provides a new approach to improving the properties of the anodic oxide formed on SiC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.