Abstract

Various biosensing platforms for real-time monitoring and mapping of chemical signals in neural networks have been developed based on CMOS process technology. Despite their achievements, however, there remains a demand for an advanced method that can offer detailed insights into cellular functions with higher spatiotemporal resolution. Here, we present a pH image sensor that employs a high-density array of 256 × 256 pixels and readout circuitry designed for fast operation. The sensor's characteristics, such as the pH sensitivity of 55.1 mV/pH and higher frame speed of 1933 fps, are experimentally demonstrated and compared to those of state-of-the-art pH image sensors. Among them, our sensor presents the smallest pitch of 2 μm with a significantly high operation speed. This sensor can successfully detect a pH change, but also transform the measured data to a two-dimensional image series in real time. The practical spatial resolution of images is investigated by an evaluation method that we first propose in this paper. By this method, we confirm that our sensor can discriminate objects distanced over 4 μm apart, which is twice bigger than the pixel pitch. In order to analyze the degraded resolution and image blur, a capacitive coupling effect at an ion-sensitive membrane is suggested as the main factor and demonstrated by simulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.