Abstract

Escalating environmental concerns have dictated the need to develop innovative methods for efficiently desulfurizing marine fuels (heavy fuel oils). In this work, the oxidative desulfurization method using deep eutectic solvents (DESs) was applied to reduce the sulfur content in a commercially available heavy fuel oil (HFO) below 0.5 wt.%, as current regulations demand. Initially, the S-compounds in the fuel were oxidized using an oxidative mixture of H2O2 with carboxylic acid (either acetic or formic acid). Subsequently, the oxidized S-compounds were extracted from the fuel using a series of environmentally friendly deep eutectic solvents (DESs), the best of which was proven to be a mixture of choline chloride with ethylene glycol at a 1/2 molar ratio. The process was optimized by investigating the effect of several process parameters on the desulfurization efficiency, namely, the H2O2/S molar ratio, the H2O2/acid molar ratio, the acid type, the oxidation temperature and oxidation time, the solvent/fuel mass ratio, the extraction time, and the extraction temperature. A desulfurization efficiency of 75.7% was achieved under the optimized conditions, reducing the S content in the fuel to 0.33 wt.%. Furthermore, different methods to recycle the DESs were investigated, and consecutive desulfurization and solvent regeneration cycles were performed. The most efficient recycling method was determined to be the anti-solvent addition of excess water, which resulted in 89.5% DES purification by causing precipitation of the dissolved solids. After three cycles of desulfurization and regeneration using different recycling routes, it was found that the regeneration degree declines gradually; however, it is more than 79.3% in all cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.