Abstract

We demonstrate high-definition, direct-printing of micron-scale metallic dots, comprised of close-packed gold nanoparticles, by utilizing the optical vortex laser-induced forward transfer technique. We observe that the spin angular momentum of the optical vortex, associated with circular polarization, assists in the close-packing of the gold nanoparticles within the printed dots. The printed dots exhibit excellent electrical conductivity without any additional sintering processes. This technique of applying optical vortex laser-induced forward transfer to metallic dots is an innovative approach to metal printing, which does not require additional sintering. It also serves to highlight new insights into light–matter interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call