Abstract

Differential ion mobility spectrometry (FAIMS) had emerged in the 2000s as a novel tool for postionization separations in conjunction with mass spectrometry (MS). High-definition FAIMS introduced a decade ago has enabled resolution of peptide, lipid, and other molecular isomers with minute structural variations and recently the isotopic shift analyses where the spectral pattern for stable isotopes fingerprints the ion geometry. Those studies, including all isotopic shift analyses, were in the positive mode. Here, we achieve the same high resolution for anions exemplified by phthalic acid isomers. The resolving power and magnitude of isotopic shifts are in line with the metrics for analogous haloaniline cations, establishing high-definition negative-mode FAIMS with structurally specific isotopic shifts. Different shifts (including the new 18O) remain additive and mutually orthogonal, demonstrating the generality of those properties across the elements and charge states. Expanding to common (not halogenated) organic compounds is a key step toward the broad use of FAIMS isotopic shift methodology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call