Abstract

D-arabitol, a five-carbon sugar alcohol, is widely used in food and pharmacy industry as a lower calorie sweetener or intermediate. Appropriate osmotic pressure was confirmed to facilitate polyol production by an osmophilic yeast strain of Yarrowia lipolytica with glycerol. In this study, an osmotic pressure control fed-batch fermentation strategy was used for high D-arabitol producing by Y. lipolytica ARA9 with crude glycerol. Glycerol was added to the broth quantitatively not only as a substrate but also as an osmotic agent. Meanwhile, NH3·H2O was fed as a nitrogen source and pH regulator. The maximum D-arabitol production reached 118.5 g/L at 108 h with the yield of 0.49 g/g and productivity of 1.10 g/L/h, respectively. Furthermore, a comparative proteomic analysis was used to study the cellular responses under excess and deficient nitrogen sources. Thirty-one differentially expressed protein spots belonging to seven different biological processes were identified. Excess nitrogen source enhanced gluconeogenesis and pentose phosphate pathways, both of which were involved in arabitol synthesis. In addition, cell growth was facilitated by increased expression of nucleotide and structural proteins. Enhanced energy and NADPH biosynthesis were employed to create a reductive environment and quell reactive oxygen species, improving D-arabitol production. Nitrogen deficiency resulted in cell rescue and stress response mechanisms such as reactive oxygen species elimination and heat shock protein response. The identified differentially expressed proteins provide information to reveal the mechanisms of the cellular responses under nitrogen source perturbation, and also provide guidance to improve D-arabitol production in metabolic engineering or process optimization methodologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.