Abstract

The high-cycle fatigue behavior of Q345B structural steel was investigated experimentally. Highfrequency vibration fatigue testing machine and scanning electron microscopy were used to study the high-cycle fatigue S–N curve characteristics and crack initiation mechanism at ambient temperature. The surface temperature of the specimens was monitored. The relation between the fatigue limit and the amount of heat dissipation was also investigated. It was found that the fatigue life changed inversely with the stress amplitude in the high-cycle range. The fatigue limit in high cycle range was obtained from heat dissipation in the specimen and found to have good agreement with the S–N curve. The crack initiation was attributed to the surface defects and the persistent slip bands due to the cycle slip in fatigue loading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.