Abstract

ABSTRACT We examine micromechanisms of fatigue crack initiation and growth in a cast AM60B magnesium alloy by relating dendrite cell size and porosity under different strain amplitudes in high cycle fatigue conditions. Fatigue cracks formed at casting pores within the specimen and near the surface, depending on the relative pore sizes. When the pore that initiated the fatigue crack decreased from approximately 110 µm to 80 µm, the fatigue life increased two times. After initiation, the fatigue cracks grew through two distinct stages before final overload specimen failure. At low maximum crack tip driving forces (Kmax < 2.3 MPa√m), the fatigue crack propagated preferentially through the α‐Mg dendrite cells. At high maximum crack tip driving forces (Kmax > 2.3 MPa√m), the fatigue crack propagated primarily through the β‐Al12Mg17 particle laden interdendritic regions. Based on these observations, any proposed mechanism‐based fatigue model for cast Mg alloys must incorporate the change in growth mechanisms for different applied maximum stress intensity factors, in addition to the effect of pore size on the propensity to form a fatigue crack.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.