Abstract

Shear cutting processes have a detrimental effect on fatigue of high strength metal components. The effect tends to increase with material grade, counteracting the task of reducing weight in chassis components using higher strength materials. Base material fatigue data are often available, but assessment of components with cut edges often require additional costly and time-consuming testing. This paper provides a methodology for estimation of fatigue life reduction by using residual stresses obtained from process simulations, and measured surface roughness in the cut edge. A stress relaxation criterion is applied to handle reduction of the initial local residual stresses. Two complex phase steels and one aluminum alloy are studied for validating the approach. Polished fatigue data is reduced to estimate S-N curves of trimmed and punched specimens at different load ratios. Good agreement between the model and test results are found for all cases. The needed data for the predictions are only a high cycle S-N relationship for polished material, uniaxial tensile properties, and the cut edge fracture surface residual stress and roughness without any parameter fitting, making it a convenient tool for estimating the reduction in fatigue life and for parameter studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call